A Framework for Planning and Controlling Non-Periodic Bipedal Locomotion
نویسندگان
چکیده
This study presents a theoretical framework for planning and controlling agile bipedal locomotion based on robustly tracking a set of non-periodic apex states. Based on the prismatic inverted pendulum model, we formulate a hybrid phase-space planning and control framework which includes the following key components: (1) a step transition solver that enables dynamically tracking non-periodic apex or keyframe states over various types of terrains, (2) a robust hybrid automaton to effectively formulate planning and control algorithms, (3) a phase-space metric to measure distance to the planned locomotion manifolds, and (4) a hybrid control method based on the previous distance metric to produce robust dynamic locomotion under external disturbances. Compared to other locomotion frameworks, we have a larger focus on non-periodic gait generation and robustness metrics to deal with disturbances. Such focus enables the proposed control framework to robustly track non-periodic apex states over various challenging terrains and under external disturbances as illustrated through several simulations. Additionally, it allows a bipedal robot to perform non-periodic bouncing maneuvers over disjointed terrains.
منابع مشابه
Robust optimal planning and control of non-periodic bipedal locomotion with a centroidal momentum model
This study presents a theoretical method for planning and controlling agile bipedal locomotion based on robustly tracking a set of non-periodic keyframe states. Based on centroidal momentum dynamics, we formulate a hybrid phase-space planning and control method which includes the following key components: (i) a step transition solver that enables dynamically tracking non-periodic keyframe state...
متن کاملGait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator
The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...
متن کاملRobust Phase-Space Planning for Agile Legged Locomotion over Various Terrain Topologies
In this study, we present a framework for phasespace planning and control of agile bipedal locomotion while robustly tracking a set of non-periodic keyframes. By using a reduced-order model, we formulate a hybrid planning framework where the center-of-mass motion is constrained to a general surface manifold. This framework also proposes phase-space bundles to characterize robustness and a robus...
متن کاملSliding Control without Reaching Phase and its Application to Bipedal Locomotion
A new variable structure control law based on the Lyapunov’s second method that can be used in trajectory planning problems of robotic systems is developed. A modified approach to the formulation of the sliding domain equations in terms of tracking errors has been presented. This approach possesses three distinct advantages: i) it eliminates the reaching phase, ii) it provides means to predict ...
متن کاملHuman-inspired motion primitives and transitions for bipedal robotic locomotion in diverse terrain
In this paper, a control design approach is presented, which uses human data in the development of bipedal robotic control techniques for multiple locomotion behaviors. Insight into the fundamental behaviors of human locomotion is obtained through the examination of experimental human data for walking on flat ground, upstairs, and downstairs. Specifically, it is shown that certain outputs of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1511.04628 شماره
صفحات -
تاریخ انتشار 2015